BUILT-UP AI-LI STRUCTURES FOR CRYOGENIC TANK AND DRY BAY APPLICATIONS

W. Barry Lisagor NASA Langley Research Center

SPF TECHNOLOGY FOR AI-LI BUILT-UP STRUCTURES

ADVANCED LAUNCH SYSTEM

Structures, Materials & Manufacturing **Built-up structures for ALDP #3104**

-	Responsible Org: NA Execution; LaRC/Ro	ASA/L	SA/LaRC kwell/GD						
	Funding (\$M):	4.9	0.4	0.1	1.5	2.0		8.9	
	FY	Prior	90	91	92	93	ΔTC	Total	
	Built-up panel concepts defined SPF and RSW parameters established Test stiffener and column buckling panels Materials characterization and properties Fab and test subscale barrel section	(1) c	ompl	te (2)					
33011					(3)				
](4) I			
3	Fab and test subscale barrel section					(6) [

Objectives:

- · Demonstrate the cost benefits of built-up cryotank & dry bay structures
- Conventional Al alloysLow density Al-Li alloys
- · Evaluate alternative low-cost stiffener and joining concepts

- Lower weight/lower system costs
- Significant reduction in tank costs
 - Reduced scrap rate/lower material costs
 - Reduction in major machining costs
 - · Avoid thick plate issues

TASK #3104 BUILT-UP STRUCTURE FOR CRYOTANKS

Program Participants

Organization

Key activity

NASA -LaRC

- SPF/RSW
- Alternate forming & joining methods
- Martin Marietta
- SPF of chemistry modified Weldalite™

- Reynolds

- Weldalite stiffener extrusions

Rockwell

- SPF of Al & Al-Li alloys
- General Dynamics
- RSW of Al & Al-Li alloys

ADP TASK #3104 BUILT-UP ALUMINUM CRYOTANKS

BENEFITS OF USING AL-LI ALLOYS FOR CRYOGENIC TANKS

SPECIFIC PROPERTIES VERSUS TEMPERATURE FOR SELECTED AL ALLOYS IN T8 TEMPER

EXPERIMENTAL VERIFICATION OF SUPERPLASTIC FORMING PROFILE

OPTIMUM POST-SPF PROPERTIES OF AL-LI ALLOYS

CHARACTERIZATION OF RESISTANCE SPOT WELDS

8090 T-6 to 2090 T-8E50 Spitting, High strength (1603 lbs overlap shear)

RESISTANCE SPOT WELDS OVERLAP SHEAR STRENGTHS

BUILT-UP STRUCTURE APPROACH TO REINFORCE FUSION WELDS

Conventional weld land arrangement Doubler reinforced fusion weld

2090-T6(SPF)/2090-T8 AI-Li COMPRESSION PANELS Tested at NASA LaRC

SUPERPLASTICALLY FORMED AI-LI MULTIPLE STIFFENED PANEL

PERFORMANCE BENEFITS USING AL-LI (G.D.)

- Direct substitution of Al-Li for conventional Al alloys can add 6000 lbs of payload to the baseline 11/2 stage vehicle. Redesigning the structure to take full advantage of the higher properties of Al-Li alloys could add >12000 lbs in payload savings.
- Weight savings of ~10% achievable by making the propellant tank of the 11/2 stage vehicle from Al-Li.
- Weight savings of ~5% achievable by making the adapter and thrust structure of the 11/2 stage vehicle from Al-Li.
- · High raw material costs of Al-Li are the primary driver in selecting the appropriate fabrication approach.
- Dependent on the material substitution approach and fabrication method the increased cost of using Al-Li could range from \$0.5M to \$4.0M per vehicle.
- In the baseline 11/2 stage vehicle the cost performance for Al-Li ranges from \$150/lb to \$750/lb of payload increase compared with the current projected payload performance of \$1500/lb using other alternatives.

ALDP BUILT-UP STRUCTURE FOR CRYOGENIC TANKS #3104

STATUS

- SPF OF Al-Li ALLOYS
 - Post-forming mechanical properties determined
 3' x 5' multiple stiffener panel formed
- RSW OF Al-Li ALLOYS
 - RSW schedules optimized using taguchi design of experiments
 RSW strength of Al-Li alloys exceeds standard military specs
- STRUCTURAL TESTING
 - Crippling panels tested and shown to meet design req'ts
 Stiffener design selected for column buckling panel
- COST/TRADE STUDIES
 - Cost analysis comparing roll forming, brake forming, extrusion and SPF fabrication methods near completion
- Current program focus assessing the benefits of Al-Li built-up dry-bay structures (intertank, fwd adapter, aft skirt)

8.3.2 Orbital Lessons Learned - A Guide to Future Vehicle Development by H. Stan Greenberg, Rockwell International